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I.INTRODUCTION 

Robots are used in many aspects of our daily life, including cleaning, medical support, rescue, military support, working 

in hazardous environments, and autonomous driving. The majority of the aforementioned applications call for mobile robots to 

maneuver through an unfamiliar environment without running into both stationary and moving impediments. The process via 

which a mobile robot moves to carry out a certain mission in its surroundings is called navigation. When a robot navigates its 

surroundings on its own, without assistance from an outside controller (such as a human), this is known as autonomous navigation. 

One of the main areas of study for mobile robotics is autonomous navigation [1]. Significant progress has been made in autonomous 

mobile robot navigation, thanks to advances in artificial intelligence (AI) and computer vision [2][3]. 

The conventional navigation method (i.e., map-building-based navigation) consists of localization, map building, and 

path planning (e.g., simultaneous localization and mapping (SLAM)) [4]. Using a map has many advantages since the entire 

planning and control system becomes computationally tractable by projecting high-dimensional observation, such as a camera 

image, into a three-dimensional pose on the map. In addition, it is possible to conveniently guarantee the optimality of the global 

path, however, it also has some drawbacks. First of all, making a precise environmental map takes a lot of effort and time, and it 

frequently calls for specialized knowledge. Second, over time, upkeep and updating the map may prove to be far more expensive, 

especially in the face of sudden developments. Third, the robot's theoretical model is the only factor that determines how effective 

the control is. This model is usually linearized or oversimplified, which eventually reduces the resilience of the navigation system. 

As a substitute to map-building-based navigation, mapless navigation is more frequently thought of as a way to get beyond the 

need for a map from the navigation system because it typically simulates a direct mapping between sensory inputs and robot 

actions. Regretfully, it is very challenging to plan the global journey for the best path without a map. Consequently, mapless 

navigation is used more often for tasks like collision avoidance that have no stated destinations or that have a destination that is 

known and within the robot's local coordinate frame. Because behavior-based navigation [5] lacks a high-level processing process 

based on past knowledge about the environment, mapless navigation is comparable to behavior-based navigation in this respect. 

 

II.RESEARCH BACKGROUND 

A suggested approach in [6] addresses the SLAM problem, a crucial issue for mobile robot autonomous navigation in an 

uncharted area. A minimal system implemented in basic mobile robots for indoor office-like settings is [7], a lightweight and real-

time efficient SLAM algorithm. It makes the assumption that all of the lines in the environment structure are parallel to one another 

in an effort to simplify things. In order to enable autonomous interior navigation of a wheeled mobile robot in an environment 

characteristic of a greenhouse—one that is prohibited GPS reception—a novel approach combining the Hector SLAM and the 

artificial potential field (APF) controller was presented in [8]. 

The robot employs an APF controller for autonomous navigation, an open-source Hector SLAM for posture estimation, 

and single light detection and ranging (LiDAR) for localization. In [9], a conceptually rich graph model for indoor robotic 

navigation was developed. The navigational tasks use the semantic information directly to produce motor commands. As a result, 
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the robot can avoid performing explicit calculations to determine its exact location or the environment's shape. But no actual robot 

is used in the implementation of the method. In [10], a method for training the convolutional neural network (CNN) model only 

for autonomous mobile robot navigation was presented in an end-to-end manner utilizing an RGB-D camera. In [11], a navigation 

technique was presented to learn the end-to-end control policy by directly generating the velocity and angle rates from the present 

view and target using the CNN model. However, the previous methods focused on labeled observation-based behavior learning 

rather than environment-based learning, and they too required a lot of labeling and performed poorly when it came to 

generalization. 

 

III.SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) 

SLAM is a fundamental technique that enables a robot to create a map of an unknown environment while simultaneously 

keeping track of its location within that map. Various algorithms, such as Extended Kalman Filter (EKF) SLAM, Graph-Based 

SLAM, and Particle Filter SLAM, are employed to achieve this. 

 

ORB-SLAM:  

ORB-SLAM uses a monocular camera and features ORB (Oriented FAST and Rotated BRIEF) for feature extraction and 

tracking. It includes loop closure and relocalization capabilities, which are crucial for correcting drift and maintaining accurate 

positioning over time. 

 

Hector SLAM:  

Hector SLAM relies on lidar sensors for mapping and does not require odometry, which makes it suitable for 

environments where odometry data is unreliable. It is particularly effective in structured, indoor environments like greenhouses. 

 

Graph SLAM:  
This method employs a probabilistic approach, representing the SLAM problem as a graph of constraints. It is well-suited 

for large-scale mapping tasks, such as urban environments. 

 

Continuous Control with RL and SLAM:  
This approach integrates reinforcement learning with SLAM to enable continuous control and real-time navigation. It is 

designed to adapt to dynamic changes in the environment, making it suitable for complex and evolving scenarios. 

 

  

SLAM 

Method 

Authors Key Features Applications Strengths Limitations 

ORB-SLAM Mur-Artal, R.; 

Montiel, J.M.M.; 

Tardós, J.D.[12] 

Monocular, feature-

based, loop closure, 

relocalization 

Indoor and 

outdoor 

environments, 

small to medium 

scale 

High accuracy, 

versatile, real-time 

performance 

Requires good 

feature-rich 

environment, 

struggles in texture-

less areas 

Hector 

SLAM 

Harik, E.H.C.; 

Korsaeth, A.[8] 

Lidar-based, map 

fusion, no odometry 

required 

Indoor 

environments, 

greenhouses 

High precision in 

structured 

environments, does 

not require 

odometry 

Limited to 2D 

mapping, depends 

heavily on high-

quality lidar data 

Graph SLAM Thrun, S.; 

Montemerlo, 

M.[13] 

Probabilistic, graph-

based optimization, 

large-scale mapping 

Urban 

environments, 

large-scale 

outdoor mapping 

Handles large-scale 

environments, 

robust against 

sensor noise 

Computationally 

intensive, requires 

good initial guess for 

convergence 

Continuous 

Control with 

RL and 

SLAM 

Mustafa, K.A.A.; 

Botteghi, N.; 

Sirmacek, B.; 

Poel, M.; 

Stramigioli, S.[1] 

Reinforcement 

learning integration, 

continuous control, 

real-time navigation 

Dynamic and 

complex 

environments 

Adaptability to 

dynamic changes, 

combines RL for 

better decision-

making 

Complex to 

implement, requires 

extensive training and 

data 

Table 1: Tabular Comparison of SLAM-Based Methods 

 

 

IV.MACHINE LEARNING-BASED MOBILE ROBOT NAVIGATION PROTOCOLS 

Reinforcement Learning (RL) 

RL algorithms enable robots to learn optimal navigation strategies through trial and error by interacting with their 

environment. Techniques such as Q-learning, Deep Q-Networks (DQN), and Policy Gradient methods are commonly used to solve 

navigation tasks in complex and dynamic environments. 
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Supervised Learning  
Supervised learning algorithms, particularly convolutional neural networks (CNNs), are employed to process sensory data 

(e.g., images, LiDAR) and make real-time navigation decisions. These models are trained on labeled datasets to recognize 

obstacles, identify paths, and make directional decisions. 

 

Unsupervised Learning  
Techniques like clustering and anomaly detection are used for mapping and environmental understanding. These 

algorithms help in identifying patterns and structures within the data, enabling robots to navigate unknown or partially known 

environments without extensive pre-mapping. 

 

Sensor Fusion with Machine Learning  
Combining data from multiple sensors (e.g., cameras, LiDAR, IMUs) using machine learning techniques improves the 

accuracy and reliability of the robot's perception. Sensor fusion models like Kalman Filters and Bayesian Networks are enhanced 

with machine learning for better environmental awareness and decision-making. 

 

Deep Learning for Navigation  
Deep learning models, particularly deep reinforcement learning (DRL), are used for end-to-end learning of navigation 

tasks. These models can handle raw sensory inputs and learn complex policies for obstacle avoidance, path planning, and goal-

directed behavior. 

  

Method Authors Key Features Applications Strengths Limitations 

Deep 

Reinforcement 

Learning 

Mnih, V., 

Kavukcuoglu, K., 

Silver, D., et al. 

(2015) [14] 

Human-level 

control, deep Q-

networks, model-

free learning 

Complex 

navigation tasks 

High adaptability, 

learns directly from 

raw sensory input 

Requires extensive 

training data, 

computationally 

intensive 

Continuous 

Control with 

Deep RL 

Lillicrap, T.P., et 

al. (2016)[15] 

Continuous action 

spaces, actor-

critic methods, 

deterministic 

policy gradient 

Real-time 

control tasks 

Handles high-

dimensional action 

spaces, suitable for 

real-time 

applications 

Requires significant 

computational 

resources for training 

Convolutional 

Neural Networks 

(CNNs) 

Krizhevsky, A., 

Sutskever, I., & 

Hinton, G.E. 

(2012)[16] 

Deep CNNs, 

ImageNet 

classification, 

feature extraction 

Object 

recognition for 

navigation 

High accuracy in 

image 

classification, 

effective for feature 

extraction 

Requires large 

labeled datasets for 

training 

Representation 

Learning 

Bengio, Y., et al. 

(2013)[17] 

Unsupervised 

learning, feature 

learning, deep 

architectures 

Environmental 

understanding 

Learns useful 

representations 

from raw data, 

improves 

generalization 

Requires careful 

design and tuning of 

learning algorithms 

Multi-Sensor 

Fusion 

Chen, C., et al. 

(2017)[18] 

Sensor fusion, 

Kalman filters, 

Bayesian 

networks 

Autonomous 

driving, indoor 

navigation 

Combines multiple 

sensor inputs for 

accurate 

perception, robust 

to sensor noise 

Complexity in sensor 

integration, 

computationally 

intensive 

Gradient 

Descent 

Optimization 

Ruder, S. 

(2016)[19][19]  

Overview of 

optimization 

algorithms, 

convergence 

analysis 

General ML 

applications 

Improves 

convergence of 

learning 

algorithms, 

enhances training 

efficiency 

Requires careful 

selection of 

optimization 

algorithm based on 

problem 

characteristics 

Deep Learning 

for Game 

Playing 

Silver, D., et al. 

(2016)[20] 

Deep neural 

networks, tree 

search, 

reinforcement 

learning 

Strategic 

planning, 

decision making 

Achieves 

superhuman 

performance in 

complex decision-

making tasks 

Computationally 

intensive, requires 

significant resources 

for training 

EfficientNet Li, W., (2020)[21] Model scaling, 

compound 

scaling, efficient 

neural networks 

Resource-

constrained 

environments 

Achieves state-of-

the-art accuracy 

with fewer 

parameters,  

Requires careful 

tuning of scaling 

parameters efficient 

for deployment in 

mobile robots 
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End-to-End 

Training of 

Visuomotor 

Policies 

Levine, S., et al. 

(2016)[22] 

End-to-end 

learning, deep 

visuomotor 

policies, 

reinforcement 

learning 

Robot 

manipulation, 

autonomous 

navigation 

Directly maps 

sensory input to 

motor actions, 

effective for 

complex control 

tasks 

Requires extensive 

training data, 

challenging to train 

end-to-end models 

Probabilistic 

Robotics 

Thrun, S., 

Burgard, W., & 

Fox, D. 

(2005)[13] 

Probabilistic 

models, Bayesian 

inference, SLAM 

SLAM, 

localization, 

mapping 

Robust to sensor 

noise, handles 

uncertainty in 

measurements 

Computationally 

intensive, requires 

good initial guesses 

for convergence 
Table 2: Pivotal Role of Machine Learning in Advancing Mobile Robot Navigation 

 

V.PATH PLANNING ALGORITHMS FOR ROBOT NAVIGATION 

Path planning is a crucial aspect of autonomous robot navigation, ensuring that robots can move from one point to another 

safely and efficiently. Here is an overview of several commonly used path planning algorithms, each with its unique approach and 

applications: 

 

Algorithm  Description Applications Strengths Limitations Reference 

Dijkstra's A graph search algorithm 

that finds the shortest 

path between nodes in a 

graph, ensuring non-

negative edge weights. 

Widely used in static 

environments where 

the map is fully 

known. 

Guarantees the 

shortest path, simple 

and easy to 

implement. 

Computationally 

expensive for 

large graphs 

[23] 

A (A-star) 

Algorithm* 

An extension of 

Dijkstra's algorithm that 

incorporates heuristics to 

prioritize paths, making it 

faster and more efficient. 

Used in games, 

robotics, and any 

pathfinding problems 

requiring efficiency. 

Faster than Dijkstra's 

due to heuristic 

function, finds 

optimal path. 

Performance 

depends on the 

quality of the 

heuristic. 

[24] 

Probabilistic 

Roadmaps 

(PRM) 

A sampling-based 

algorithm that constructs 

a graph (roadmap) of 

random points in the 

space and connects them 

to find a path. 

Effective for high-

dimensional 

configuration spaces, 

like robotic arms. 

Efficient for high-

dimensional spaces, 

good for complex 

environments. 

May not find the 

optimal path, 

depends on the 

sampling 

quality. 

[25] 

Rapidly-

exploring 

Random 

Trees (RRT) 

Another sampling-based 

algorithm that rapidly 

explores the space by 

building a tree of possible 

paths. 

Suitable for high-

dimensional spaces 

and dynamic 

environments. 

Efficiently explores 

large spaces, can 

handle dynamic 

obstacles 

Path quality may 

be suboptimal, 

requires post-

processing to 

smooth paths. 

[26] 

Potential 

Field 

Methods 

Uses artificial potential 

fields where the robot is 

attracted to the goal and 

repelled by obstacles. 

Real-time obstacle 

avoidance and path 

planning. 

Simple to implement, 

good for real-time 

applications 

Local minima 

can trap the 

robot, not 

always 

guaranteed to 

find a path. 

[27] 

Hybrid A 

Algorithm* 

Combines the efficiency 

of A* with the ability to 

handle non-holonomic 

constraints of real robots. 

Autonomous driving, 

mobile robot 

navigation in complex 

environments. 

Considers the 

kinematic constraints 

of robots, produces 

feasible paths. 

More complex 

and 

computationally 

intensive than 

standard A*. 

[28] 

Dynamic 

Window 

Approach 

(DWA) 

A local path planning 

algorithm that considers 

the robot's dynamics and 

kinematic constraints. 

Mobile robot 

navigation in dynamic 

environments. 

Produces smooth and 

feasible paths, 

suitable for real-time 

applications. 

May not find the 

global optimal 

path, only 

focuses on local 

navigation. 

[29] 

 

VI.CONCLUSION 

Each SLAM-based method has unique strengths and limitations that make it suitable for specific applications. ORB-

SLAM excels in feature-rich environments, Hector SLAM is ideal for structured indoor settings, Graph SLAM is robust for large-

scale mapping, and RL-integrated SLAM offers adaptability in dynamic scenarios. The choice of method depends on the specific 

requirements of the navigation task and the environment in which the robot operates. This summary encapsulates the pivotal role 

of machine learning in advancing mobile robot navigation, showcasing the blend of innovative techniques and practical  
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applications that drive the field forward. Each path planning algorithm has its strengths and weaknesses, making them 

suitable for different applications. Traditional algorithms like Dijkstra's and A* are robust and reliable for static environments, 

while sampling-based methods like PRM and RRT excel in high-dimensional and complex spaces. Potential field methods and the 

Dynamic Window Approach are beneficial for real-time applications, and hybrid approaches integrate multiple techniques to 

handle specific constraints. Advances in deep reinforcement learning offer promising new directions, particularly for dynamic and 

unstructured environments. 
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