
 Published By: Fifth Dimension Research Publication https://fdrpjournals.org/ 17 | P a g e

Indian Journal of Computer Science and Technology
Volume 3, Issue3 (September-December 2024), PP: 17-19.
www.indjcst.com ISSN No: 2583-5300

Enhanced Cybersecurity via Deep LSTM Networks for
Intrusion Detection

Sohaib Ansari1, Rajat Kamble2, Shishir Mishra3, Abhishek Piperde4
1,2,3 Students, Department of Computer Science Engineering JIT, Nagpur, Maharashtra, India.
4Assistant.Professor, Department of Computer Science Engineering JIT, Nagpur, Maharashtra, India.

To Cite this Article: Sohaib Ansari1, Rajat Kamble2, Shishir Mishra3, Abhishek Piperde4, “Enhanced Cybersecurity via Deep LSTM

Networks for Intrusion Detection”, Indian Journal of Computer Science and Technology, Volume 03, Issue 03 (September-December 2024),
PP: 17-19.

I.INTRODUCTION

The normalized datais given as an input to the proposed LSTM-RNN method. The method is evaluated with seven

optimizers such as adam, adamax, Stochastic Gradient Descent (SGD), Adagrad, RMSprop, Nadam, and Adadelta. The goal of

this chapter will be the following; 1) To propose a Deep Long Short Term Memory Recurrent Neural Network for intrusion

detection system; 2) To test it on a real dataset NSL-KDD dataset; (3) To provide obtained results and (4) To provide evidence

of why this procedure can outperform the existing classification techniques. The experiment evaluation consists of the following

phases.

 Selected datasets are pre-processed using the techniques numericalization and normalization. The numericalization is used

to transform categorical features into numerical features. Normalization can be normalized the large feature set values

between 0 and 1.
 LSTM-RNN classifier trains the dataset with specified optimizers individually.

 The classifier tests the test dataset with specified optimizers individually.

 The classifiers results are evaluated and compared with existing classifiers results.

II.RECURRENT NEURAL NETWORK (RNN) ARCHITECTURE

Figure 1 Weight sharing across time steps is encapsulated in the recurrent

Abstract: Deep Long Short-Term Memory Recurrent Neural network (LSTM-RNN) methodology is consists of pre-processing,

training and testing phases. The raw data attributes consist of numerical and non-numerical values. Non-numerical values need

to be conversion of numerical values because the LSTM-RNN model requires numerical attribute values as input. The

numericalization process can be done with one-hot encoding. One-hot encoding assigns unique feature values to the non-

numerical features. Some numerical zed data attributes consist of large feature value and some attributes consist of minimum
value. The difference between minimum feature value and maximum feature value is very large. This difference affects the

original feature values. The normalization process avoids the effectiveness of the original feature values. Normalization could

be done with min-max normalization.

Key words: Neural network, LSTM, LSTM-RNN

http://www.indjcst.com/

Enhanced Cybersecurity via Deep LSTM Networks for Intrusion Detection

 Published By: Fifth Dimension Research Publication https://fdrpjournals.org/ 18 | P a g e

RNN is a variant of artificial neural network (ANN), wherein the connection between the nodes resembles the neurons of

human brain. Neural network connections can transmit signal to other nodes like synapses in a biological brain. The artificial

neuron then processes the received signal and transmits it to other connected nodes. The connections and neurons typically have

weights to adjust the learning process. The weights can vary to adjust the strength of the signals as the signal travels from the

input layers to the output layers. An ANN contains hidden layers between the input and output layers. RNN should have at least

three hidden layers. The basic architecture of RNNs contains input unit, hidden units, and output units evaluating all the

calculations by weight adjustment to produce the outputs. It has a one-way data flow from the input units to the hidden units and

a directional loop that compares the error of this hidden layer to that of the previous hidden layer, and adjusts the weights between

the hidden layers. The following figure depicts a simple RNN architecture.

An RNN is an extension of traditional feed-forward neural network (FFNNs). The information moves the forward

direction i.e. from the input nodes through the hidden nodes to the output nodes. There are no cycles in the network and hidden

nodes are optional in FFNNs. Conventional RNN contains of input layer, and a recurrent layer as shown in above figure. They
comprises of series of weight matrices and activation functions. We assume an input vector sequence, a hidden vector sequence,

and an output vector sequence denoted by X, H, and Y respectively. An input vector sequence given as 𝑋 = (𝑥1, 𝑥2, , 𝑥𝑇

). Atraditional RNN calculates the hidden vector sequence 𝐻 = (ℎ1, ℎ2, , ℎ𝑇)and output vector sequence 𝑌 = (𝑦1, 𝑦2, . .

. . . , 𝑦𝑇) with t = 1 to T as follows

ℎ𝑡 = (𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)……………..1

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦………………………2

Where 𝜎 is the logistic function, b is bias vector, and W is weight matrix and b is bias term. In equation 3.1, ht is the

hidden layer output at t-time steps, and ht-1 denotes the previous hidden layer’s output. Standard RNNs are not able to establish

more than 5-10 time steps. A vanishing gradient problem arises in RNN when gradient-based learning methods are used for

updating the weights. Weights receive an updated proportion of the partial derivative of the error function in each training

iteration. In some cases, the gradient will be very small. These error signals may either blow-up or vanish, which prevents the

weight from changing value. These vanishing error signals may cause the weights to fluctuate. The model learning takes

unacceptable time with vanishing errors or does not work at all.

RNNs can be used for supervised classification learning [89, 90]. Due to vanishing and gradient, exploding RNNs are

difficult to train and improperly assigns weights (i.e. assigned very high or very low values). To overcome the training issues

LSTM with forget gates are often combined with RNN.

III.LSTM OPTIMIZERS

Gradient descent is one of the most popular methods to perform optimization and the most common way to optimize

neural networks. Gradient descent is a way to minimize a cost function J(θ) by updating the parameters in the reverse direction

of the gradient of the cost function ∇θ J(θ) with respect to the parameters [94]. There are three types of gradient descent which

differ in how much data we use to compute the gradient of the object function. They are batch gradient descent, stochastic

gradient descent and mini-batch gradient descent. Vanilla mini-batch gradient descent does not guarantee good convergence,

however, offers two challenges that need to be addressed two issues. The first is selecting a proper learning can be difficult.

Learning rate schedules try to adjust the learning rate during training. The second is to minimize non-convex error functions for

neural networks. This section summarizes some gradient descent optimizes to understand how to adjust the learning rate briefly.

IV. DATASET DESCRIPTION AND DETAILS
DARPA initiative IDS-events at MIT Lincoln LAB in 1998. Later from DARPA network dataset files, KDD99 dataset

was created by Lee and Stolfo , who were participants in DARPA team. The KDD99 can be easily used in machine learning

dataset. However it is much more used in IDS than DARPA dataset. The KDD dataset 38 attacks are divided into five main

categories, such as Dos (Denial of Services), Probe, R2L (Root to Local), U2R (User to Root), and normal. The training and

testing dataset contains 24, and 14 attacks respectively. The researchers identified several short comings in KDD dataset.

 It is heavily imbalanced i.e 80

 U2R and R2L are rare in dataset

 Redundant datasets in both train and test

 It has large dataset, most of the studies used small percentage of it.

V. DATASET FEATURES
To reduce the inadequacy of KDD99 dataset, Tavallaee et al. proposed NSL-KDD dataset. It has been generated by

removing redundant instances and decreasing of size dataset. The NSL-KDD dataset had 41 features, which are either continuous

or discrete. features are grouped into three categories, such as basic features Content features , and traffic features Basic features

encapsulates all the attributes extracted from TCP/IP connection. Content features comprices of suspicious behavior data, i.e

number of failed login attempts. Traffic category is categorized as same host with same service in current connection with respect

to window interval.The NSL KDD dataset has sufficient number of records in the train and test dataset, which is reasonably

rational and enables to execute experiments on the complete set. The number of selected records from each group is inversely

proportional to the percentage of records in the original KDD dataset. The removal of redundant records enable the classifiers to

produce an un-biased results.

Enhanced Cybersecurity via Deep LSTM Networks for Intrusion Detection

 Published By: Fifth Dimension Research Publication https://fdrpjournals.org/ 19 | P a g e

VI.LSTM CLASSIFICATION ALGORITHM

Input

Train and test intrusion dataset x

Output

Multi-attack classification

Step 1: Normalize the dataset (Di) into values from 0 to 1

Step 2: Setup input units, LSTM units, output units to define LSTM

Step 3: Select training batch size and organize (Di) accordingly

Step 4: for n epochs and batch size do

Step 5: Train the network LSTM

Step 6: end for

Step 7: Run predictions using LSTM

Step 8: Classify the multi-attacks with soft-max activation function

Step 9: Stop.

VII.EXPERIMENTS AND RESULTS

NSL-KDD dataset is used to evaluate the performance of deep learning approach Long Short-Term Memory Recurrent

Neural Network (LSTM-RNN) which has been discussed in this chapter. At the pre-processing phase, the dataset features are

encoded using One-Hot-Encoding to transform categorical features into numerical feature. The dataset features have been scaled

using Min-Max normalization technique.

VIII. CONCLUSION
Deep neural network architecture, Long Short Term Memory Recurrent Neural Network (LSTM-RNN) to improve the

accuracy and detection rate, and minimize the false alarm rate. The LSTM-RNN model is implemented with seven optimizers

such as adadelta, adagrad, adamax, nadam, SGD, RMSprop, and adam optimizers individually with 100 hidden layer sizes. Our

experiment is evaluated on NSL-KDD dataset. Compared with the other state-of –the-art techniques, LSTM-RNN model with

adamax optimizer can significantly improve the validation accuracy, detection rate and minimized false positive rate for network

intrusion detection. It must be pointed out that LSTM-RNN classifier does not accurately classify the minor number of attacks

in training dataset such as R2L and U2R. The model train and test is comparatively very high.

Reference
1. Malik, N.; Sardaraz, M.; Tahir, M.; Shah, B.; Ali, G.; Moreira, F. Energy-efficient load balancing algorithm for workflow scheduling in

cloud data centers using queuing and thresholds. Appl. Sci. 2021, 11, 5849.
2. Baiyere, A.; Topi, H.; Venkatesh, V.; Wyatt, J.; Design, R.; Donnellan, B. Communications of the Association for Information Systems

Internet of Things (IoT)—A Research Agenda for Information Systems.
3. Lone, A.N.; Mustajab, S.; Alam, M. A comprehensive study on cybersecurity challenges and opportunities in the IoT world. Secur.

Priv. 2023, 6, e318
4. Dahou, A.; Abd Elaziz, M.; Chelloug, S.A.; Awadallah, M.A.; Al-Betar, M.A.; Al-Qaness, M.A.; Forestiero, A. Intrusion Detection System

for IoT Based on Deep Learning and Modified Reptile Search Algorithm. Comput. Intell. Neurosci. 2022, 2022, 6473507.
5. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.

	Indian Journal of Computer Science and Technology
	I.INTRODUCTION

